Platinum and Transparent Conducting Oxide Free Graphene-CNT Composite Based Counter-Electrodes for Dye-Sensitized Solar Cells
Surface Engineering and Applied Electrochemistry, ISSN: 1934-8002, Vol: 55, Issue: 4, Page: 472-480
2019
- 5Citations
- 12Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Abstract: Graphene nano-sheets were prepared from natural graphite by a simple high shear exfoliation technique in suspension form and in bulk quantity. The structural properties of the graphene thus prepared were characterised by X-ray diffraction, Raman spectroscopy, transmission electron microscopy and dynamic light scattering. BYK-multi-walled carbon nanotubes (MWCNT) paste was infused into the graphene solution. UV-Vis spectroscopy was performed to know the concentration of both graphene and CNT solution. Glass microslides were used to be coated with used to be coated with the graphene-MWCNT solution and surface morphology was studied by field emission scanning electron microscopy. The study of morphology showed that the CNT’s provide better connectivity across the graphene flakes. Sheet resistance was measured by the van der Pauw method. An optimum concentration for CNT was found out for lowest sheet resistance. 3-Aminopropyl triethoxysilane (APTES) was added into the graphene-CNT composite paste to achieve better adhesion. Cell assembling was done using TiO coated photo-anodes, tri-iodide/iodide electrolyte solution and the graphene-CNT-APTES based counter-electrodes. APTES improves the adhesion and was able to reduce the cell-cost.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85071775370&origin=inward; http://dx.doi.org/10.3103/s1068375519040021; http://link.springer.com/10.3103/S1068375519040021; http://link.springer.com/content/pdf/10.3103/S1068375519040021.pdf; http://link.springer.com/article/10.3103/S1068375519040021/fulltext.html; https://dx.doi.org/10.3103/s1068375519040021; https://link.springer.com/article/10.3103/S1068375519040021
Allerton Press
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know