Characteristics of synaptic connections between rodent primary somatosensory and motor cortices
Somatosensory and Motor Research, ISSN: 0899-0220, Vol: 28, Issue: 3-4, Page: 63-72
2011
- 47Citations
- 78Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations47
- Citation Indexes47
- 47
- CrossRef23
- Captures78
- Readers78
- 78
Article Description
The reciprocal connections between primary motor (M1) and primary somatosensory cortices (S1) are hypothesized to play a crucial role in the ability to update motor plans in response to changes in the sensory periphery. These interactions provide M1 with information about the sensory environment that in turn signals S1 with anticipatory knowledge of ongoing motor plans. In order to examine the synaptic basis of sensorimotor feedforward (S1M1) and feedback (M1S1) connections directly, we utilized whole-cell recordings in slices that preserve these reciprocal sensorimotor connections. Our findings indicate that these regions are connected via direct monosynaptic connections in both directions. Larger magnitude responses were observed in the feedforward direction (S1M1), while the feedback (M1S1) responses occurred at shorter latencies. The morphology as well as the intrinsic firing properties of the neurons in these pathways indicates that both excitatory and inhibitory neurons are targeted. Differences in synaptic physiology suggest that there exist specializations within the sensorimotor pathway that may allow for the rapid updating of sensorymotor processing within the cortex in response to changes in the sensory periphery. © 2011 Informa Healthcare Ltd.
Bibliographic Details
Informa UK Limited
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know