Simulation of cooling of polyurethane coated vehicle steering wheel
El-Cezeri Journal of Science and Engineering, ISSN: 2148-3736, Vol: 7, Issue: 2, Page: 592-602
2020
- 4Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
The cooling of injection-molded plastics during production is of great importance. If the plastic material in the injection mold is cooled properly and slowly, the risk of cracking and stret ching in the product is minimized. Therefore, the location, position and characteristics of the cooling channels are extremely important when designing the mold. It is not possible to determine the optimum cooling conditions by experimental study on molds with complex geometries. Therefore, the simulation of the model is important in terms of both cost and time. In this study, the effect of the roughness coefficient of the cooling channels, the flow rate of the refrigerant and the diameter of the channel on the cooling of the steering wheel of the polyurethane coated vehicle injected into the mold were modeled by simulation. First of all, the effect of different mold materials on the cooling of the injected plastic was investigated. It was determined that the plastic in the mold made of steel material was found to cool down in a longer time. Then the surface roughness values in the channel 0.045mm, 0.45mm and 4.5mm, flow rate of 4lt/min, 8lt/min and 16lt/min and channel diameters 0.5cm, 1cm and 2cm were analyzed. As a result, cooling time was decreased by 24.2% when the channel diameter was decreased by 75%, and decreased by 64.6% when the flow rate quadrupled.
Bibliographic Details
El-Cezeri: Journal of Science and Engineering
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know