Polymer Solidification under Pressure and High Cooling Rates
International Polymer Processing, ISSN: 0930-777X, Vol: 15, Issue: 1, Page: 103-110
2000
- 13Citations
- 11Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Polymer solidification under processing conditions is a complex phenomenon in which the kinetics of flow, high thermal gradients and high pressures determine the product morphology. The study of polymer structure formed under pressure has been mainly made using conventional techniques such as dilatometry and differential scanning calorimetry under isothermal conditions or non isothermal conditions but at cooling rates several orders of magnitude lower than those experienced in industrial processes. A new equipment has been recently developed and improved to study the crystallization of polypropylene when subjected to pressure and cooled rapidly. An experimental apparatus essentially constituted of a special injection mould has been employed. Polymer samples can be cooled at a known cooling rate and under a known pressure. Micro Hardness (MH), Wide angle x-ray diffraction (WAXD), Polarised Optical Microscopy (POM) and density measurements are then used to characterize the sample morphology. The results of rapid cooling experiments underpressure on an iPP sample display a lower density and a lower density dependence on cooling rate for increasing pressure. Micro hardness confirms the trend. A deconvolution technique of WAXD patterns is used to evaluate the final phase content of samples and to assess a crystallization kinetics behaviour. Phase distribution results indicate that the decrease of alpha phase with pressure is balanced by an increase of the mesomorphic phase leaving unaffected the amorphous phase content. This peculiar behaviour can be easily related to a negative influence of pressure on the kinetics of the crystallization of alpha phase.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know