Genetic parameter estimates for body conformation traits using composite index, principal component, and factor analysis
Journal of Dairy Science, ISSN: 0022-0302, Vol: 102, Issue: 6, Page: 5219-5229
2019
- 31Citations
- 43Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations31
- Citation Indexes31
- 31
- CrossRef24
- Captures43
- Readers43
- 43
Article Description
Information about genetic parameters is population specific and it is crucial for designing animal breeding programs and predicting response to selection. This study was carried out to estimate the genetic parameters for 23 body conformation traits of 45,517 Chinese Holstein reared in Eastern China from 1995 to 2017 with the Bayesian inference method using a linear animal mixed model. The methods to integrate these traits included (1) using the composite index from the Dairy Association of China and (2) applying principal component analysis and factor analysis to explore the relationship between the conformation traits. Estimates of heritability using the composite index were low (0.04; feet and legs) to moderate (0.23; body capacity). Strong genetic correlations were observed between the individual body conformation traits. Both principal components (1 to 7; eigenvalues ≥ 1) and latent factors (1 to 7; eigenvalues ≥ 1) explained 60.37% of total variability. Principal component 1 and factor 1 accounted for the traits that are usually associated with milk production. Moderate to low heritability were estimated through multi-trait analysis for principal components (from 0.07 to 0.21) and latent factors (from 0.07 to 0.23). Genetic correlations among the 2 multivariate techniques are typically lower compared with the one existing among the measured traits. Results from these analyses suggest the possibility of using both principal component analysis and factor analysis in morphological evaluation, simplifying the information given by the body conformation traits into new variables that could be useful for the genetic improvement of the Chinese Holstein population. This information could also be used to avoid analyzing large number of correlated traits, thereby improving precision and reducing computation burdens to analyze large and complex data.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S0022030219303972; http://dx.doi.org/10.3168/jds.2018-15561; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85065038167&origin=inward; http://www.ncbi.nlm.nih.gov/pubmed/31056333; https://linkinghub.elsevier.com/retrieve/pii/S0022030219303972; https://dx.doi.org/10.3168/jds.2018-15561
American Dairy Science Association
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know