PlumX Metrics
Embed PlumX Metrics

Evaluation of focal cervical spinal cord lesions in multiple sclerosis: Comparison of white matter-suppressed T1 inversion recovery sequence versus conventional STIR and proton density-weighted turbo spin-echo sequences

American Journal of Neuroradiology, ISSN: 1936-959X, Vol: 37, Issue: 8, Page: 1561-1566
2016
  • 11
    Citations
  • 0
    Usage
  • 32
    Captures
  • 0
    Mentions
  • 0
    Social Media
Metric Options:   Counts1 Year3 Year

Metrics Details

Article Description

BACKGROUND AND PURPOSE: Conventional MR imaging of the cervical spinal cord in MS is challenged by numerous artifacts and interreader variability in lesion counts. This study compares the relatively novel WM-suppressed T1 inversion recovery sequence with STIR and proton density-weighted TSE sequences in the evaluation of cervical cord lesions in patients with MS. MATERIALS AND METHODS: Retrospective blinded analysis of cervical cord MR imaging examinations of 50 patients with MS was performed by 2 neuroradiologists. In each patient, the number of focal lesions and overall lesion conspicuity were measured in the STIR/proton density-weighted TSE and WM-suppressed T1 inversion recovery sequence groups. Independent side-by-side comparison was performed to categorize the discrepant lesions as either "definite" or "spurious." Lesion contrast ratio and edge sharpness were independently calculated in each sequence. RESULTS: Substantial interreader agreement was noted on the WM-suppressed T1 inversion recovery sequence (κ=0.82) compared with STIR/proton density-weighted TSE (κ=0.52). Average lesion conspicuity was better on the WM-suppressed T1 inversion recovery sequence (conspicuity of 3.1/5.0 versus 3.7/5.0, P < .01, in the WM-suppressed T1 inversion recovery sequence versus STIR/proton density-weighted TSE, respectively). Spurious lesions were more common on STIR/proton density-weighted TSE than on the WMsuppressed T1 inversion recovery sequence (23 and 30 versus 3 and 4 by readers 1 and 2, respectively; P<.01). More "definite" lesions were missed on STIR/proton density-weighted TSE compared with the WM-suppressed T1 inversion recovery sequence (37 and 38 versus 3 and 6 by readers 1 and 2, respectively). Lesion contrast ratio and edge sharpness were highest on the WM-suppressed T1 inversion recovery sequence. CONCLUSIONS: There is better interreader consistency in the lesion count on the WM-suppressed T1 inversion recovery sequence compared with STIR/proton density-weighted TSE sequences. The focal cord lesions are visualized with better conspicuity due to better contrast ratio and edge sharpness. There are fewer spurious lesions on the WM-suppressed T1 inversion recovery sequence compared with STIR/proton density-weighted TSE. The WM-suppressed T1 inversion recovery sequence could potentially be substituted for either STIR or proton density-weighted TSE sequences in routine clinical protocols.

Provide Feedback

Have ideas for a new metric? Would you like to see something else here?Let us know