Design and Simulation of Synchronous Buck Converter in Comparison with Regular Buck Converter
International Journal of Robotics and Control Systems, ISSN: 2775-2658, Vol: 2, Issue: 1, Page: 79-86
2022
- 6Citations
- 29Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
In a variety of low-power applications, a step-down dc-dc converter is used to reduce the voltage from a higher level. The two types of dc-dc converters are a regular buck and synchronous buck. The synchronous buck utilizes two switches and one diode, whereas the regular buck uses one switch and one diode. Many converters rely on the power components' switching qualities to work. A second MOSFET is required due to the diode's higher conduction losses. Because of the diode's conduction losses, the converter's efficiency may be reduced. The use of a synchronous buck converter improves efficiency by reducing diode losses. The main goal of this study is to compare and contrast these two low-power step-down converters. The simulation in this work was performed using the LTSPICE program.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know