Physiological role of erythrocyte nitric oxide
Clinical Hemorheology and Microcirculation, ISSN: 1875-8622, Vol: 64, Issue: 4, Page: 517-520
2016
- 10Citations
- 21Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations10
- Citation Indexes10
- CrossRef10
- Captures21
- Readers21
- 21
Article Description
Nitric oxide (NO) produced by endothelial cells interacts with erythrocyte through band 3 protein, being scavenged by haemoglobin. A signal transduction mechanism involving protein Gi and protein band 3 stimulates erythrocyte NO efflux when acetylcholine (ACh) binds to erythrocyte membrane acetylcholinesterase. Binding of normal plasma fibrinogen (Fib) levels, to erythrocyte membrane CD47 decreases the NO efflux. When high Fib concentration and ACh were present the efflux of NO from erythrocytes was normalized. The increased NO efflux from erythrocytes in presence of high Fib concentration and band 3 phosphorylation is reinforced in the presence of 4N1K an agonist peptide of CD47. When both Fib and 4N1K are present the NO efflux from erythrocytes is higher or not affected according lower or high levels of cAMP. Erythrocyte NO efflux in patients with systemic lupus erythematous and rheumatoid attrite was significantly negative associated with carotid intima-media thickness. In patients with amyotrophic lateral sclerosis erythrocyte NO content is preserved and an inverse association between respiratory function and NO efflux from the erythrocyte was verified. Sepsis patients before dead at 24h showed higher efflux of NO from erythrocytes that worsening the blood sub lingual microcirculation observed by high unequal blood flow and high microvascular flow index. The in vivo animal models either of inflammation or of hypertension evidenced that the NO efflux from erythrocyte decrease as a compensatory mechanism. All studies conducted since 2000 where we demonstrated the existence NO inside the erythrocyte by fluorescence microscopy, and after their signaling pathway needs more development translational research for news therapeutics and further application in not invasive therapy to vascular inflammatory diseases.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85011564411&origin=inward; http://dx.doi.org/10.3233/ch-168028; http://www.ncbi.nlm.nih.gov/pubmed/27767981; http://www.medra.org/servlet/aliasResolver?alias=iospress&doi=10.3233/CH-168028; https://www.medra.org/servlet/aliasResolver?alias=iospress&doi=10.3233/CH-168028; https://dx.doi.org/10.3233/ch-168028; https://content.iospress.com:443/articles/clinical-hemorheology-and-microcirculation/ch168028
IOS Press
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know