PlumX Metrics
Embed PlumX Metrics

Bagging k-dependence Bayesian network classifiers

Intelligent Data Analysis, ISSN: 1571-4128, Vol: 25, Issue: 3, Page: 641-667
2021
  • 5
    Citations
  • 0
    Usage
  • 1
    Captures
  • 0
    Mentions
  • 0
    Social Media
Metric Options:   Counts1 Year3 Year

Metrics Details

Article Description

Bagging has attracted much attention due to its simple implementation and the popularity of bootstrapping. By learning diverse classifiers from resampled datasets and averaging the outcomes, bagging investigates the possibility of achieving substantial classification performance of the base classifier. Diversity has been recognized as a very important characteristic in bagging. This paper presents an efficient and effective bagging approach, that learns a set of independent Bayesian network classifiers (BNCs) from disjoint data subspaces. The number of bits needed to describe the data is measured in terms of log likelihood, and redundant edges are identified to optimize the topologies of the learned BNCs. Our extensive experimental evaluation on 54 publicly available datasets from the UCI machine learning repository reveals that the proposed algorithm achieves a competitive classification performance compared with state-of-the-art BNCs that use or do not use bagging procedures, such as tree-augmented naive Bayes (TAN), k-dependence Bayesian classifier (KDB), bagging NB or bagging TAN.

Provide Feedback

Have ideas for a new metric? Would you like to see something else here?Let us know