Oppositional spotted hyena optimizer with mutation operator for global optimization and application in training wavelet neural network
Journal of Intelligent and Fuzzy Systems, ISSN: 1875-8967, Vol: 38, Issue: 5, Page: 6677-6690
2020
- 22Citations
- 10Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Conference Paper Description
Success behind nature inspired evolutionary metaheuristic algorithms lies in its seemly combination of operator's castoff for smooth balance between exploration and exploitation. The deficit in such combination leads to untimely convergence of an algorithm, simultaneously failed to attain global optimum by stocking in local optimum. This work represents atypical algorithm termed as OBL-MO-SHO to improve the performance of existing SHO. To deal with more intricate realistic problems and to enhance the explorative and exploitative strength of SHO, we have integrated the oppositional learning concept with mutation operator. The proposed algorithm OBL-MO-SHO (oppositional spotted hyena optimizer with mutation operator) reveals promising performance in terms of achieving global optimum and superior convergence rate which confirms its improved exploration and exploitation capability within searching region. To establish competency of proposed OBL-MO-SHO algorithm the same is appraised by means of standard functions set belongs to IEEE CEC 2017. The efficacy of said method has been proven by means of various performance metrics and the outcomes also compared with state-of-the-art algorithms. To scrutinize its uniqueness statistically, Friedman and Holms test has been performed as one non-parametric test. Additionally as an application to unravel real world intricate difficulties the said OBL-MO-SHO algorithm has been castoff to train wavelet neural network by considering datasets selected from UCI depository. The reported results unveils that the evolved OBL-MO-SHO might be one potential algorithm for enlightening different optimization difficulties effectively.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85086734522&origin=inward; http://dx.doi.org/10.3233/jifs-179746; https://www.medra.org/servlet/aliasResolver?alias=iospress&doi=10.3233/JIFS-179746; https://dx.doi.org/10.3233/jifs-179746; https://content.iospress.com:443/articles/journal-of-intelligent-and-fuzzy-systems/ifs179746
SAGE Publications
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know