Research on badminton action feature recognition based on improved HMM model
Journal of Intelligent and Fuzzy Systems, ISSN: 1875-8967, Vol: 39, Issue: 4, Page: 5571-5582
2020
- 5Citations
- 14Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Correction Description
The badminton movement speed is fast, and the movement is complicated. Therefore, it is difficult to effectively recognize the athlete's movement through the monitoring level in the competition and training, which makes it difficult for the athlete to effectively improve his skill. In order to effectively improve the training effect and the quality of the athletes, this study uses badminton as the research object, analyzes the sports characteristics research algorithm through literature review, and finds the shortcomings of traditional algorithms. At the same time, this paper combines the actual situation to improve the algorithm and combines GMM and HMM to builds the GMM-HMM model. In addition, this paper uses the Baum-Welch unsupervised learning algorithm for data processing, and based on the learning machine training, the recognition results are obtained. Finally, in order to verify the validity of the model, this study uses the mobile phone badminton action as the data foundation and performs training recognition in the model to summarize the recognition results. The research shows that the algorithm has good performance and can meet the actual needs and can be used as a reference for the subsequent related research corporal punishment theory.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85094893086&origin=inward; http://dx.doi.org/10.3233/jifs-189038; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85185170934&origin=inward; https://www.medra.org/servlet/aliasResolver?alias=iospress&doi=10.3233/JIFS-189038; https://dx.doi.org/10.3233/jifs-189038; https://content.iospress.com:443/articles/journal-of-intelligent-and-fuzzy-systems/ifs189038
SAGE Publications
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know