Adaptive motor cortex plasticity following grip reconstruction in individuals with tetraplegia
Restorative Neurology and Neuroscience, ISSN: 1878-3627, Vol: 36, Issue: 1, Page: 73-82
2018
- 8Citations
- 55Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations8
- Citation Indexes8
- CrossRef8
- Captures55
- Readers55
- 55
Article Description
Background: Tendon transfer is a surgical technique for restoring upper limb motor control in patients with cervical spinal cord injuries (SCI), and offers a rare window into cortical neuroplasticity following regained arm and hand function. Objective: Here, we aimed to examine neuroplasticity mechanisms related to re-established voluntary motor control of thumb flexion following tendon transfer. Methods: We used functional Magnetic Resonance Imaging (fMRI) to test the hypothesis that restored limb control following tendon transfer is mediated by activation of that limb's area of the primary motor cortex. We examined six individuals with tetraplegia who underwent right-sided surgical grip reconstruction at Sahlgrenska University Hospital, Sweden. All were right-handed males, with a SCI at the C6 or C7 level, and a mean age of 40 years (range = 31-48). The average number of years elapsed since the SCI was 13 (range = 6-26). Six right-handed gender-and age-matched control subjects were included (mean age 39 years, range = 29-46). Restoration of active thumb flexion in patients was achieved by surgical transfer of one of the functioning elbow flexors (brachioradialis), to the paralyzed thumb flexor (flexor pollicis longus). We studied fMRI responses to isometric right-sided elbow flexion and key pinch, and examined the cortical representations within the left hemisphere somatomotor cortex a minimum of one year after surgery. Results: Cortical activations elicited by elbow flexion did not differ in topography between patients and control participants. However, in contrast to control participants, patients' cortical thumb flexion activations were not topographically distinct from their elbow flexion activations. Conclusion: This result speaks against a topographic reorganization in which the thumb region regains thumb control following surgical tendon transfer. Instead, our findings suggest a neuroplastic mechanism in which motor cortex resources previously dedicated to elbow flexion adapt to control the thumb.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85048013504&origin=inward; http://dx.doi.org/10.3233/rnn-170775; http://www.ncbi.nlm.nih.gov/pubmed/29439365; https://journals.sagepub.com/doi/10.3233/RNN-170775; https://dx.doi.org/10.3233/rnn-170775; https://content.iospress.com:443/articles/restorative-neurology-and-neuroscience/rnn170775
SAGE Publications
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know