Effect of aging and mechanical brushing on surface roughness of 3D printed denture resins: A profilometer and scanning electron microscopy analysis
Technology and Health Care, ISSN: 0928-7329, Vol: 30, Issue: 1, Page: 161-173
2022
- 19Citations
- 40Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations19
- Citation Indexes19
- 19
- CrossRef18
- Captures40
- Readers40
- 40
Article Description
The use of 3D printed material in the dental field is gaining tremendous attention. However, studies related to 3D printed denture resins are scarce and need consideration before their inclusion in routine clinical practice. OBJECTIVE: This study aimed to assess the surface roughness (Ra) of 3D printed denture resins following aging and mechanical brushing. METHODS: Forty round samples (diameter, 10 mm and thickness, 3 mm) were fabricated from two 3D printed (DentaBASE and Denture 3D+) and one conventional polymethylmethacrylate (PMMA) denture materials. The samples were thermo-cycled, subjected to mechanical brushing, and later immersed in either artificial saliva (AS), coffee, cola, or lemon juice (n= 10) to simulate one and two years of oral use. Surface roughness (Ra) was determined using a non-contact profilometer and scanning electron microscope was used for qualitative analysis. The data was analyzed using SPSS v.20 (α= 0.05). RESULTS: Denture 3D+ demonstrated highest mean Ra (1.15 ± 0.28 μm), followed by PMMA (0.99 ± 0.50 μm) and DentaBASE (0.81 ± 24). The difference in mean Ra between the materials was statistically non-significant (P= 0.08). Amongst the different beverages used, the highest Ra was observed for samples immersed in lemon juice (1.06 ± 0.40 μm) followed by cola (1.04 ± 0.46 μm) and coffee (0.98 ± 0.40 μm), respectively. The lowest Ra was observed for samples immersed in AS (0.85 ± 0.24 μm). CONCLUSION: The surface roughness of 3D printed denture resins was comparable with that of conventional PMMA resins. Denture 3D+ demonstrated the highest mean roughness, followed by PMMA and DentaBASE.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85122830581&origin=inward; http://dx.doi.org/10.3233/thc-212974; http://www.ncbi.nlm.nih.gov/pubmed/34250915; https://journals.sagepub.com/doi/full/10.3233/THC-212974; https://dx.doi.org/10.3233/thc-212974; https://content.iospress.com:443/articles/technology-and-health-care/thc212974
SAGE Publications
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know