Effects of lead (Pb)-induced oxidative stress on morphological and physio-biochemical properties of rice
Biocell, ISSN: 1667-5746, Vol: 45, Issue: 5, Page: 1413-1423
2021
- 23Citations
- 22Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
In rice, high concentration of lead (Pb) can cause phyto-toxicity affecting several physiological functions. Cultivation of rice varieties that are resistant to Pb-induced oxidative stress is an important management strategy in Pb-contaminated soils. In the current study, we evaluated four different rice cultivars for their response to Pb-induced stress. Three japonica type cultivars X-Jigna, Ediget, and Furat, and one Indica type cultivar Amber 33 were grown in soil containing different Pb concentrations (0 mM, 0.6 mM, and 1.2 mM). The soil was treated with 0 mM or 0.6 mM or 1.2 mM Pb solution one month prior to rice seedling transplantation. Thereafter, four-week-old rice seedlings were transplanted into the treated soil and their responses were observed until maturity. The data revealed that a highest concentration of Pb (1.2 mM) induced significant reduction in agronomic traits such as plant height, number of tillers per plant, number of panicles per plant, and number of spikelets per panicle in all the rice cultivars. However, least reduction in the agronomic traits was observed in X-Jigna, whereas the highest reduction in the agronomic traits was observed in Ediget. Antioxidant activity of catalase (CAT), peroxidase (POD), polyphenol oxidase (PPO), and superoxide dismutase (SOD), was evaluated along with the accumulation of superoxide ions (O.-), protein, proline, chlorophyll, sucrose, glucose, and fructose contents in all the rice cultivars. A significant increase in antioxidant activity and in the accumulation of proline and sucrose contents with the least reduction in the chlorophyll and protein contents was observed in X-Jigna suggesting that X-Jigna is the most tolerant among all the rice cultivars tested against Pb-stress. On the other hand, non-significant and slightly significant increase in the antioxidant activity, less accumulation of proline and sucrose contents, and higher reduction in the chlorophyll and protein contents was observed in Ediget, which further suggest that Ediget is the most susceptible rice cultivar to Pb-stress. In addition, the other rice cultivars Furat and Amber 33, were found to be moderately tolerant to Pb-induced oxidative stress. In summary, our results suggest that tolerance to Pb-induced oxidative stress would be a result of a synergetic action of both enzymatic and non-enzymatic antioxidant systems, leading to a balanced redox status in rice.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know