Analytical Model for Underwater Wireless Sensor Network Energy Consumption Reduction
Computers, Materials and Continua, ISSN: 1546-2226, Vol: 72, Issue: 1, Page: 1611-1626
2022
- 5Citations
- 6Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
In an Underwater Wireless Sensor Network (UWSN), extreme energy loss is carried out by the early expiration of sensor nodes and causes a reduction in efficiency in the submerged acoustic sensor system. Systems based on clustering strategies, instead of each node sending information by itself, utilize cluster heads to collect information inside the clusters for forwarding collective information to sink. This can effectively minimize the total energy loss during transmission. The environment of UWSN is 3D architecture-based and follows a complex hierarchical clustering strategy involving its most effecting unique parameters such as propagation delay and limited transmission bandwidth. Round base clustering strategy works in rounds, where each round comprises three fundamental stages: Cluster head selection, grouping or node association, and data aggregation followed by forwarding data to the sink. In UWSN, the energy consumed during the formation of clusters has been considered casually or completely evaded in the previous works. In this paper, the cluster head setup period has been considered the main contributor to extra energy utilizer. A numerical channel model is proposed to compute extra energy. It is performed by using a UWSN broad model. The results have shown that extra maximum energy consumption is approximately 12.9 percent of the system total energy consumed in information transmissions.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know