Deep learning framework for classification of emoji based sentiments
Computers, Materials and Continua, ISSN: 1546-2226, Vol: 72, Issue: 2, Page: 3145-3158
2022
- 1Citations
- 30Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Recent patterns of human sentiments are highly influenced by emoji based sentiments (EBS). Social media users are widely using emoji based sentiments (EBS) in between text messages, tweets and posts. Although tiny pictures of emoji contains sufficient information to be considered for construction of classification model; but due to the wide range of dissimilar, heterogynous and complex patterns of emoji with similarmeanings (SM) have become one of the significant research areas of machine vision. This paper proposes an approach to provide meticulous assistance to social media application (SMA) users to classify the EBS sentiments. Proposed methodology consists upon three layerswhere first layer deals with data cleaning and feature selection techniques to detect dissimilar emoji patterns (DEP) with similar meanings (SM). In first sub step we input set of emoji, in second sub step every emoji has to qualify user defined threshold, in third sub step algorithm detects every emoji by considering as objects and in fourth step emoji images are cropped, after data cleaning these tiny images are saved as emoji images. In second step we build classification model by using convolutional neural networks (CNN) to explore hidden knowledge of emoji datasets. In third step we present results visualization by using confusion matrix and other estimations. This paper contributes (1) data cleaning method to detect EBS; (2) highest classification accuracy for emoji classification measured as 97.63%.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know