Numerical Investigation of Malaria Disease Dynamics in Fuzzy Environment
Computers, Materials and Continua, ISSN: 1546-2226, Vol: 74, Issue: 2, Page: 2345-2361
2023
- 6Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Captures6
- Readers6
Article Description
The application of fuzzy theory is vital in all scientific disciplines. The construction of mathematical models with fuzziness is little studied in the literature. With this in mind and for a better understanding of the disease, an SEIR model of malaria transmission with fuzziness is examined in this study by extending a classical model of malaria transmission. The parameters β and δ, being function of the malaria virus load, are considered fuzzy numbers. Three steady states and the reproduction number of the model are analyzed in fuzzy senses. A numerical technique is developed in a fuzzy environment to solve the studied model, which retains essential properties such as positivity and dynamic consistency. Moreover, numerical simulations are carried out to illustrate the analytical results of the developed technique. Unlike most of the classical methods in the literature, the proposed approach converges unconditionally and can be considered a reliable tool for studying malaria disease dynamics.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know