GMLP-IDS: A Novel Deep Learning-Based Intrusion Detection System for Smart Agriculture
Computers, Materials and Continua, ISSN: 1546-2226, Vol: 77, Issue: 1, Page: 379-402
2023
- 9Citations
- 55Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Smart Agriculture, also known as Agricultural 5.0, is expected to be an integral part of our human lives to reduce the cost of agricultural inputs, increasing productivity and improving the quality of the final product. Indeed, the safety and ongoing maintenance of Smart Agriculture from cyber-attacks are vitally important. To provide more comprehensive protection against potential cyber-attacks, this paper proposes a new deep learning-based intrusion detection system for securing Smart Agriculture. The proposed Intrusion Detection System IDS, namely GMLP-IDS, combines the feedforward neural network Multilayer Perceptron (MLP) and the Gaussian Mixture Model (GMM) that can better protect the Smart Agriculture system. GMLP-IDS is evaluated with the CIC-DDoS2019 dataset, which contains various Distributed Denial-of-Service (DDoS) attacks. The paper first uses the Pearson’s correlation coefficient approach to determine the correlation between the CIC-DDoS2019 dataset characteristics and their corresponding class labels. Then, the CIC-DDoS2019 dataset is divided randomly into two parts, i.e., training and testing. 75% of the data is used for training, and 25% is employed for testing. The performance of the newly proposed IDS has been compared to the traditional MLP model in terms of accuracy rating, loss rating, recall, and F1 score. Comparisons are handled on both binary and multi-class classification problems. The results revealed that the proposed GMLP-IDS system achieved more than 99.99% detection accuracy and a loss of 0.02% compared to traditional MLP. Furthermore, evaluation performance demonstrates that the proposed approach covers a more comprehensive range of security properties for Smart Agriculture and can be a promising solution for detecting unknown DDoS attacks.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know