A new method to evaluate linear programming problem in bipolar single-valued neutrosophic environment
CMES - Computer Modeling in Engineering and Sciences, ISSN: 1526-1506, Vol: 129, Issue: 1, Page: 881-906
2021
- 13Citations
- 6Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
A bipolar single-valued neutrosophic set can deal with the hesitation relevant to the information of any decision making problem in real life scenarios, where bipolar fuzzy sets may fail to handle those hesitation problems. In this study, we first develop a new method for solving linear programming problems based on bipolar single-valued neutrosophic sets. Further, we apply the score function to transform bipolar single-valued neutrosophic problems into crisp linear programming problems. Moreover, we apply the proposed technique to solve fully bipolar single-valued neutrosophic linear programming problems with non-negative triangular bipolar single-valued neutrosophic numbers (TBSNNs) and non-negative trapezoidal bipolar single-valued neutrosophic numbers (TBSNNs).
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know