Dynamic Mechanical Behavior and Numerical Simulation of an Ancient Underground Rock Mass under Impact Loading
CMES - Computer Modeling in Engineering and Sciences, ISSN: 1526-1506, Vol: 134, Issue: 1, Page: 517-539
2023
- 3Captures
- 1Mentions
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Captures3
- Readers3
- Mentions1
- News Mentions1
- News1
Most Recent News
Investigators from Zhejiang University Release New Data on Mining and Minerals (Dynamic Mechanical Behavior and Numerical Simulation of an Ancient Underground Rock Mass Under Impact Loading)
2022 DEC 29 (NewsRx) -- By a News Reporter-Staff News Editor at Math Daily News -- Investigators publish new report on Mining and Minerals. According
Article Description
To study the dynamic mechanical properties of tuff under different environmental conditions, the tuff from an ancient quarry in Shepan Island was prepared. The impact damage to the rock was tested using a triaxial dynamic impact mechanical testing system (TDIMTS) with different ground stresses, temperatures, and groundwater pressures. The time-strain relationship, dynamic stress-strain relationship, energy dissipation law, energy-peak strain relationship, and the impact damage pattern of the tuff specimens under impact air pressures were investigated. The TDIMTS experiment on ancient underground rock mass under impact loading was also simulated using the finite element analysis software LS-DYNA based on the Holmquist-Johnson-Cook (HJC) material model. The dynamic failure process, failure pattern and peak stress of tuff specimen were calculated. The simulation results obtained using the above methods were in good agreement with the experimental results. The results of the dynamic experiment show that with the same local stress, groundwater pressure, and temperature, the damage to the tuff specimens caused by blasting and quarrying disturbances gradually increases as the impact pressure increases. Under the same local stress, groundwater pressure, and temperature, the energy required to rupture the tuffs in ancient underground caverns is relatively small if the impact pressure is low accordingly, but as the impact pressure increases, the damage to the tuff caused by quarrying disturbance gradually increases. The damage gradually increases and the degree of damage to the tuff and the strain energy exhibit asymptotic growth when the tuff specimens are subjected to the greater strain energy, increasing the degree of rupturing of the tuff. In addition, the average crushing size decreases with increasing strain energy. By comparing the simulation results with the experimental results, it was found that the HJC model reflected the dynamic impact performance of tuff specimen, and the simulation results showed an evident strain rate effect. These results of this study can offer some guidance and theoretical support for the stability evaluation, protection, and safe operation of the ancient underground caverns in future.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know