A Thorough Investigation on Image Forgery Detection
CMES - Computer Modeling in Engineering and Sciences, ISSN: 1526-1506, Vol: 134, Issue: 3, Page: 1489-1528
2023
- 2Citations
- 18Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Review Description
Image forging is the alteration of a digital image to conceal some of the necessary or helpful information. It cannot be easy to distinguish the modified region from the original image in some circumstances. The demand for authenticity and the integrity of the image drive the detection of a fabricated image. There have been cases of ownership infringements or fraudulent actions by counterfeiting multimedia files, including re-sampling or copy-moving. This work presents a high-level view of the forensics of digital images and their possible detection approaches. This work presents a thorough analysis of digital image forgery detection techniques with their steps and effectiveness. These methods have identified forgery and its type and compared it with state of the art. This work will help us to find the best forgery detection technique based on the different environments. It also shows the current issues in other methods, which can help researchers find future scope for further research in this field.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know