Analysis of the Thermal Behavior of a Lithium Cell Undergoing Thermal Runaway
Fluid Dynamics and Materials Processing, ISSN: 1555-2578, Vol: 17, Issue: 5, Page: 887-898
2021
- 2Citations
- 4Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
This study examines the thermal runaway of a lithium ion battery caused by poor heat dissipation performances. The heat transfer process is analyzed on the basis of standard theoretical concepts. Water mist additives are considered as a tool to suppress the thermal runaway process. The ensuing behaviour of the battery in terms of surface temperature and heat generation is analyzed for different charge and discharge rates. It is found that when the remaining charge is 100%, the heat generation rate of the battery is the lowest, and the surface temperature with a 2C charge rate is higher than that obtained for a 0.5C charge rate. The experimental results show that when the additive concentration is 20% NaCl, its ability to inhibit the thermal runaway is the strongest.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know