Water-Based Environmentally Friendly Pesticide Formulations Based on Cyclodextrin/Pesticide Loading System
Journal of Renewable Materials, ISSN: 2164-6341, Vol: 11, Issue: 2, Page: 777-789
2023
- 3Citations
- 12Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Difenoconazole (DIF) is a representative variety of broad-spectrum triazole fungicides and liposoluble pesticides. However, the water solubility of DIF is so poor that its application is limited in plant protection. In addition, the conventional formulations of DIF always contain abundant organic solvents, which may cause pollution of the environment. In this study, two DIF/cyclodextrins (CDs) inclusion complexes (ICs) were successfully prepared, which were DIF/β-CD IC and DIF/hydroxypropyl-β-CD IC (DIF/HP-β-CD IC). The effect of cyclodextrins on the water solubility and the antifungal effect of liposoluble DIF pesticide were investigated. According to the phase solubility test, the molar ratio and apparent stability constant of ICs were obtained. Fourier transform infrared spectroscopy, thermal gravity analysis, X-ray diffraction and scanning electron microscopy were used systemati-cally to characterize the formation and characteristics of ICs. The results noted that DIF successfully entered the cavities of two CDs. In addition, the antifungal effect test proved the better performance of DIF/HP-β-CD IC, which exceeded that of DIF emulsifiable concentrate. Therefore, our study provides informative direction for the intelligent use of liposoluble pesticides with cyclodextrins to develop water-based environmentally friendly formulations.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know