Mechanical and biological behaviour of PCL and PCL/PLA scaffolds for tissue engineering applications
Chemical Engineering Transactions, ISSN: 2283-9216, Vol: 32, Page: 1645-1650
2013
- 44Citations
- 178Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Conference Paper Description
A new biomanufacturing system allowing to produce three-dimensional matrices (scaffolds) with well defined internal geometries, uniform pore distribution and good adhesion among different adjacent layers. Polymers selected are Poly ε-caprolactone (PCL) and Poly Lactic Acid (PLA), both these polymers are used in medical applications. These two polymers are interesting biomaterials because they are complementary on their physical properties and biodegradability. This work aims to assess the temperature evaluation during the extrusion process and the influences of the temperatures on the PCL and PCL/PLA scaffolds with lay down pattern 90° and pore size 350μm. The results demonstrated that extrusion process not modified the thermal properties of the scaffolds and these structures are able to sustain MG-63cells. Copyright © 2013, AIDIC Servizi S.r.l.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know