Optimization strategy of polycyclic aromatic hydrocarbon contaminated media bioremediation through biosurfactant addition
Chemical Engineering Transactions, ISSN: 2283-9216, Vol: 39, Issue: Special Issue, Page: 1597-1602
2014
- 6Citations
- 7Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
A microbial surfactant was investigated for its potential to enhance bioavailability and, hence, the biodegradation of PAHs contaminated soil. Phenanthrene, a 3-ring polycyclic aromatic hydrocarbon (PAH), was chosen as a model target compound. The bioavailability and biodegradation tests were performed in aqueous and soil-slurry microscosms .The rhamnolipid biosurfactant used in this study was extracted from culture supernatants after growth of Pseudomonas aeruginosa BP9 strain in nitrogen-limited mineral salts medium. Solubilisation of phenanthrene in aqueous solution was enhanced by 400 mg of the rhamnolipid per litre increasing more than 19 folds. Phenanthrene aqueous phase biodegradation experiments were done with an initial concentration of 200 mg/L and showed 92 % mineralization in 6 days with a rhamnolipid concentration of 400 mg/L, in comparison to the 27 % mineralization of the other microcosm with no rhamnolipid amendment. Which accelerated the biodegradation rate, by increasing the bioavailabilty and by shortening the lag phase. This shows the potential application of the rhamnolipid in stimulating in-situ and ex-situ enhanced bioremediation of polycyclic aromatic hydrocarbon contaminated media.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know