Parametric study on the transesterification reaction by using cao/silica catalyst
Chemical Engineering Transactions, ISSN: 2283-9216, Vol: 56, Page: 601-606
2017
- 16Citations
- 65Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Recently, the application of heterogeneous catalyst has attracted considerable interest in biodiesel production compared to homogenous catalyst because of its reusability in successive reactions runs and easier to separate from the reaction mixture. Thus, attempts have been directed to develop supported catalyst to improve the efficiency and recovering ability of the prepared catalyst. In this study, a renewable low cost heterogeneous hybrid catalyst through utilization of waste material; rice husk and eggshell was synthesized via wet impregnation method. The performance of CaO impregnated with silica was tested for its catalytic activity via transesterification of waste cooking oil. The effect of silica content, catalyst loading, methanol to oil molar ratio, reaction time and reaction temperature on biodiesel yield were investigated. The result show that the calcium oxide (CaO) supported with silica is more effective for the production of biodiesel compared to CaO individually. Furthermore, it was determined that the transesterification conditions of 3 wt % catalyst loading. 15:1 methanol to oil molar ratio, 90 min reaction time and 60 °C reaction temperatures resulted in biodiesel yield of 90 %.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know