Remarks on the behavior of an agentbased model of spatial distribution of species
Annals of Emerging Technologies in Computing, ISSN: 2516-029X, Vol: 5, Issue: 2, Page: 37-49
2021
- 1Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Captures1
- Readers1
Article Description
Agent-based models have gained considerable notoriety in ecological modeling as well as in several other fields yearning for the ability to capture the emergent behavior of a complex system in which individuals interact with each other and with their environment. These models are implemented by applying a bottom-up approach, where the entire behavior of the system emerges from the local interaction between their components (agents or individuals). Usually, these interactions between individuals and their enclosing environment are modeled by very simple local rules. From the conceptual point of view, another appealing characteristic of this simulation approach is that it is well aligned with the reality whenever the system is composed of a multitude of individuals (behavioral units) that can be flexibly combined and placed in the environment. Due to their inherent flexibility, and despite of their simplicity, it is necessary to pay attention to the adjustments in their parameters which may result in unforeseen changes on the overall behavior of these models. In this paper we study the behavior of an agent-based model of spatial distribution of species, by analyzing the effects of the model parameters and the implications of the environment variables (that compose the environment where the species lives) on the models’ output. The presented experiments show that the behavior of the model depends mainly on the conditions of the environment where the species live, and the main parameters presented in life cycle of the species.
Bibliographic Details
International Association for Educators and Researchers (IAER)
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know