Explainable & Safe Artificial Intelligence in Radiology
Journal of the Korean Society of Radiology, ISSN: 2951-0805, Vol: 85, Issue: 5, Page: 834-847
2024
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Review Description
Artificial intelligence (AI) is transforming radiology with improved diagnostic accuracy and efficiency, but prediction uncertainty remains a critical challenge. This review examines key sources of uncertainty—out-of-distribution, aleatoric, and model uncertainties—and highlights the importance of independent confidence metrics and explainable AI for safe integration. Independent confidence metrics assess the reliability of AI predictions, while explainable AI provides transparency, enhancing collaboration between AI and radiologists. The development of zero-error tolerance models, designed to minimize errors, sets new standards for safety. Addressing these challenges will enable AI to become a trusted partner in radiology, advancing care standards and patient outcomes.
Bibliographic Details
XMLink
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know