Ba/Ca ratios in teeth reveal habitat use patterns of dolphins
Marine Ecology Progress Series, ISSN: 1616-1599, Vol: 521, Page: 249-263
2015
- 8Citations
- 70Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Teeth and otoliths are metabolically inert structures that preserve a chronology of chemical variations that may be related to the environmental histories experienced by each organism. Because of the natural decrease of barium (Ba) and increase of strontium (Sr) bioavailability in water with increasing salinity, these elements may be especially useful to track habitat use in aquatic organisms. Therefore, we tested whether the Ba/Ca and Sr/Ca ratios in the teeth of dolphins represent a salinity gradient. The main aim was to determine whether these elements can be used as a natural tag for different aquatic environments. Teeth from 2 freshwater dolphins (Inia geoffrensis and Sotalia fluviatilis) and 2 marine species (S. guianensis and Pontoporia blainvillei) from Brazil and Uruguay were analyzed using a Laser Ablation Inductively Coupled Plasma-Mass Spectrometer. Intensity ratios of Ba/Ca and Sr/Ca were measured along a line that covered all growth increments in the dentin from the second year of life onwards. Teeth from the freshwater species had mean Ba/Ca values tenfold higher than marine dolphins, confirming the inverse relationship between salinity (and thus ambient Ba/Ca) and elemental ratios in teeth. Furthermore, Ba/Ca ratios could also differentiate dolphins from lower-salinity estuarine areas from those in areas with minimal freshwater discharge. No significant differences were found for Sr/Ca values. Results presented encouraging indications for the application of this technique as a potential new tool for studying habitat use in aquatic mammals.
Bibliographic Details
Inter-Research Science Center
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know