Testing the critical size at settlement hypothesis for two species of coral reef fish
Marine Ecology Progress Series, ISSN: 1616-1599, Vol: 681, Page: 87-101
2022
- 2Citations
- 9Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
The critical size hypothesis states that pelagic larvae (vertebrate or invertebrate) must reach a critical size to begin metamorphosis and settle to their suitable reef habitat; however, there have been few critical tests of its broader validity. If there were a narrower range of ages at settlement relative to size, then the data would conform to a critical age hypothesis. It would also be predicted that size or age would be truncated respectively at the lower limit for each hypothesis. These hypotheses were tested for 2 species of coral reef fish from the Great Barrier Reef. Variation in age at settlement for Pomacentrus coelestis was greater than that of size at settlement for fish collected in waters of different temperatures, and the size distribution was truncated at a size of ∼9.3 mm; accordingly, we accepted the critical size at settlement hypothesis for this species. In contrast, Scolopsis bilineatus met one criterion to reject the critical size hypothesis, based on variation, but truncation in size was found. Variation in age aligned with a critical age at settlement hypothesis. There was a variable relationship between age at settlement and size for both species. Strong evidence is provided that growing fast in the plankton and settling quickly may be advantageous for fish. For both species, settlers with a short planktonic larval duration, and sometimes small size at settlement, had grown faster in the plankton and may have experienced better conditions. Differences in pre-settlement growth are likely to affect the maximum size at which fish can settle and post-settlement survivorship.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know