Effects of Pore Size and Crosslinking Methods on the Immobilization of Myoglobin in SBA-15
Frontiers in Bioengineering and Biotechnology, ISSN: 2296-4185, Vol: 9, Page: 827552
2022
- 12Citations
- 12Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations12
- Citation Indexes12
- 12
- Captures12
- Readers12
- 12
Article Description
A series of stable mesoporous silica sieves (SBA-15) with different pore sizes (9.8, 7.2, and 5.5 nm) were synthesized using a hydrothermal method. The resulting mesoporous material was then utilized for protein immobilization using myoglobin (Mb) as the target protein. The effects of pore size and adsorption methods on the immobilization efficiency of Mb in a mesoporous material were studied. The SBA-15 with a pore size of 7.2 nm showed the best loading capacity, reaching 413.8 mg/g. The SBA-15 with a pore size of 9.8 nm showed the highest retained catalytic ability (92.36%). The immobilized enzyme was more stable than the free enzyme. After seven consecutive assay cycles, Mb adsorbed by SBA-15 (Mb/SBA-15) and Mb adsorbed by SBA-15 and crosslinked with glutaraldehyde (Mb/G/SBA-15) retained 36.41% and 62.37% of their initial activity, respectively.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85124549198&origin=inward; http://dx.doi.org/10.3389/fbioe.2021.827552; http://www.ncbi.nlm.nih.gov/pubmed/35155417; https://www.frontiersin.org/articles/10.3389/fbioe.2021.827552/full; https://dx.doi.org/10.3389/fbioe.2021.827552; https://www.frontiersin.org/journals/bioengineering-and-biotechnology/articles/10.3389/fbioe.2021.827552/full
Frontiers Media SA
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know