Effects of Triiodothyronine on Human Osteoblast-Like Cells: Novel Insights From a Global Transcriptome Analysis
Frontiers in Cell and Developmental Biology, ISSN: 2296-634X, Vol: 10, Page: 886136
2022
- 2Citations
- 6Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations2
- Citation Indexes2
- Captures6
- Readers6
Article Description
Background: Thyroid hormones play a significant role in bone development and maintenance, with triiodothyronine (T3) particularly being an important modulator of osteoblast differentiation, proliferation, and maintenance. However, details of the biological processes (BPs) and molecular pathways affected by T3 in osteoblasts remain unclear. Methods: To address this issue, primary cultures of human adipose-derived mesenchymal stem cells were subjected to our previously established osteoinduction protocol, and the resultant osteoblast-like cells were treated with 1 nm or 10 nm T3 for 72 h. RNA sequencing (RNA-Seq) was performed using the Illumina platform, and differentially expressed genes (DEGs) were identified from the raw data using Kallisto and DESeq2. Enrichment analysis of DEGs was performed against the Gene Ontology Consortium database for BP terms using the R package clusterProfiler and protein network analysis by STRING. Results: Approximately 16,300 genes were analyzed by RNA-Seq, with 343 DEGs regulated in the 1 nm T3 group and 467 upregulated in the 10 nm T3 group. Several independent BP terms related to bone metabolism were significantly enriched, with a number of genes shared among them (FGFR2, WNT5A, WNT3, ROR2, VEGFA, FBLN1, S1PR1, PRKCZ, TGFB3, and OSR1 for 1nM T3; and FZD1, SMAD6, NOG, NEO1, and ENG for 10 nm T3). An osteoblast-related search in the literature regarding this set of genes suggests that both T3 doses are unfavorable for osteoblast development, mainly hindering BMP and canonical and non-canonical WNT signaling. Conclusions: Therefore, this study provides new directions toward the elucidation of the mechanisms of T3 action on osteoblast metabolism, with potential future implications for the treatment of endocrine-related bone pathologies.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85133608575&origin=inward; http://dx.doi.org/10.3389/fcell.2022.886136; http://www.ncbi.nlm.nih.gov/pubmed/35784485; https://www.frontiersin.org/articles/10.3389/fcell.2022.886136/full; https://dx.doi.org/10.3389/fcell.2022.886136; https://www.frontiersin.org/journals/cell-and-developmental-biology/articles/10.3389/fcell.2022.886136/full
Frontiers Media SA
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know