Development of a metacognition co-curriculum for a university course in introductory organic chemistry
Frontiers in Education, ISSN: 2504-284X, Vol: 9
2024
- 13Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Captures13
- Readers13
- 13
Article Description
Metacognition is a fundamental skill that allows advanced learners to adapt to diverse learning environments. Metacognition, however, can be domain specific and students may fail to generalize metacognitive skills across domains. Thus, students in higher education may require specific training to acquire relevant metacognitive skills in differing domains or may need cueing to engage their metacognitive skills and knowledge in new domains. The present report describes the development of a co-curricular metacognitive program for chemistry students and suggests how this program could be adopted by other chemistry courses or adapted for other domains in higher education. Several supports were introduced in this program including self-assessment of competence with learning task inventories (LTIs; i.e., detailed lists of learning tasks), self-assessments of confidence regarding in-class content questions, and performance predictions and postdictions on tests. In general, exposure to these supports resulted in overall performance and confidence gains. However, individual differences were evident with some students demonstrating greater learning gains than others. Initial Dunning-Kruger effects associated with pre-and postdictions, with low-performing students overestimating grades and high-performing students underestimating grades, decreased over exposure. A summary of the evolution of this metacognitive co-curricular program, the educational literature that steered it, and the differential impact on students is explained.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know