Robustness of Indoor Aquatic Mesocosm Experimentations and Data Reusability to Assess the Environmental Risks of Nanomaterials
Frontiers in Environmental Science, ISSN: 2296-665X, Vol: 9
2021
- 5Citations
- 10Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Indoor aquatic mesocosms are increasingly used in nanosafety to assess the behavior, fate, and impacts of engineered nanomaterials (ENMs) in aquatic environments using relevant exposure scenarios. The robustness of 60 L freshwater mesocosm experimentation was tested on the basis of the reusability of the data collected in a database named MESOCOSM regarding mesocosm experiments examining the environmental risks of CeO ENMs. We observed high reliability of the measured variables across replicates. The sensitivity of this mesocosm methodology was evidenced by the contrasted ecosystem responses revealed by a multivariate analysis. We also observed that adding variables to the data set up to 15% did not affect the outcome of the analysis of the results. This ability to buffer this variability demonstrates that the indoor aquatic mesocosms are robust tools contributing to the environmental risk assessment of ENMs, and stresses the benefit of reusing the data stored in databases such as MESOCOSM adhering to the findable, accessible, interoperable, reusable (FAIR) data principles.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85107756566&origin=inward; http://dx.doi.org/10.3389/fenvs.2021.625201; https://www.frontiersin.org/articles/10.3389/fenvs.2021.625201/full; https://dx.doi.org/10.3389/fenvs.2021.625201; https://www.frontiersin.org/journals/environmental-science/articles/10.3389/fenvs.2021.625201/full
Frontiers Media SA
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know