Brains as Computers: Metaphor, Analogy, Theory or Fact?
Frontiers in Ecology and Evolution, ISSN: 2296-701X, Vol: 10
2022
- 17Citations
- 64Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Review Description
Whether electronic, analog or quantum, a computer is a programmable machine. Wilder Penfield held that the brain is literally a computer, because he was a dualist: the mind programs the brain. If this type of dualism is rejected, then identifying the brain to a computer requires defining what a brain “program” might mean and who gets to “program” the brain. If the brain “programs” itself when it learns, then this is a metaphor. If evolution “programs” the brain, then this is a metaphor. Indeed, in the neuroscience literature, the brain-computer is typically not used as an analogy, i.e., as an explicit comparison, but metaphorically, by importing terms from the field of computers into neuroscientific discourse: we assert that brains compute the location of sounds, we wonder how perceptual algorithms are implemented in the brain. Considerable difficulties arise when attempting to give a precise biological description of these terms, which is the sign that we are indeed dealing with a metaphor. Metaphors can be both useful and misleading. The appeal of the brain-computer metaphor is that it promises to bridge physiological and mental domains. But it is misleading because the basis of this promise is that computer terms are themselves imported from the mental domain (calculation, memory, information). In other words, the brain-computer metaphor offers a reductionist view of cognition (all cognition is calculation) rather than a naturalistic theory of cognition, hidden behind a metaphoric blanket.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85130268854&origin=inward; http://dx.doi.org/10.3389/fevo.2022.878729; https://www.frontiersin.org/articles/10.3389/fevo.2022.878729/full; https://dx.doi.org/10.3389/fevo.2022.878729; https://www.frontiersin.org/journals/ecology-and-evolution/articles/10.3389/fevo.2022.878729/full
Frontiers Media SA
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know