Beta 2 glycoprotein I and neutrophil extracellular traps: Potential bridge between innate and adaptive immunity in anti-phospholipid syndrome
Frontiers in Immunology, ISSN: 1664-3224, Vol: 13, Page: 1076167
2023
- 14Citations
- 11Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations14
- Citation Indexes14
- 14
- Captures11
- Readers11
- 11
Article Description
Antiphospholipid syndrome (APS) is a systemic autoimmune disorder characterized by recurrent vascular thrombosis and miscarriages in the absence of known causes. Antibodies against phospholipid-binding proteins (aPL) are pathogenic players in both clotting and pregnancy APS manifestations. There is sound evidence that antibodies specific for beta2 glycoprotein I (β2GPI) trigger thrombotic and pregnancy complications by interacting with the molecule on the membranes of different cell types of the coagulation cascade, and in placenta tissues. In addition to the humoral response against β2GPI, both peripheral and tissue CD4 β2GPI-specific T cells have been reported in primary APS as well as in systemic lupus erythematosus (SLE)-associated APS. While adaptive immunity plays a clear role in APS, it is still debated whether innate immunity is involved as well. Acute systemic inflammation does not seem to be present in the syndrome, however, there is sound evidence that complement activation is crucial in animal models and can be found also in patients. Furthermore, neutrophil extracellular traps (NETs) have been documented in arterial and venous thrombi with different etiology, including clots in APS models. Keeping in mind that β2GPI is a pleiotropic glycoprotein, acting as scavenger molecule for infectious agents and apoptotic/damaged body constituents and that self-molecules externalized through NETs formation may become immunogenic autoantigens, we demonstrated β2GPI on NETs, and its ability to stimulate CD4β2GPI-specific T cells. The aim of this review is to elucidate the role of β2GPI in the cross-talk between the innate and adaptive immunity in APS.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85146901221&origin=inward; http://dx.doi.org/10.3389/fimmu.2022.1076167; http://www.ncbi.nlm.nih.gov/pubmed/36700193; https://www.frontiersin.org/articles/10.3389/fimmu.2022.1076167/full; https://dx.doi.org/10.3389/fimmu.2022.1076167; https://www.frontiersin.org/journals/immunology/articles/10.3389/fimmu.2022.1076167/full
Frontiers Media SA
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know