Optical Imaging of Dynamic Collagen Processes in Health and Disease
Frontiers in Mechanical Engineering, ISSN: 2297-3079, Vol: 8
2022
- 7Citations
- 30Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Review Description
Collagen is a major structural component of nearly every tissue in the human body, whose hierarchical organization imparts specific mechanical properties and defines overall tissue function. Collagenous soft tissues are dynamic structures that are in a constant state of remodeling but are also prone to damage and pathology. Optical techniques are uniquely suited for imaging collagen in these dynamic situations as they allow for non-invasive monitoring with relatively high spatiotemporal resolution. This review presents an overview of common collagen dynamic processes associated with human health and disease and optical imaging approaches that are uniquely suited for monitoring, sensing, and diagnosing these changes. This review aims to 1) provide researchers with an understanding of the underlying optical properties of collagen that can be leveraged for extracellular matrix visualization and 2) present emerging opportunities for machine learning approaches to drive multiscale and multimodality solutions.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know