Ionic Liquid Co-Catalyst Assisted Biodiesel Production From Waste Cooking Oil Using Heterogeneous Nanocatalyst: Optimization and Characterization
Frontiers in Nanotechnology, ISSN: 2673-3013, Vol: 4
2022
- 2Citations
- 14Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
In the present work, the biodiesel was produced from waste cooking oil (WCO) using heterogeneous zinc doped iron nanocatalyst and tetrabutylammonium iodide (TBAI) as co-catalyst. The heterogeneous zinc doped iron nanocatalyst was synthesized and characterized. The functional group in the heterogeneous nanocatalyst was confirmed using FTIR analysis, the crystalline nature was studied by XRD analysis, and the size and structure of the nanocatalyst were analyzed by SEM. The optimization of transesterification parameters like oil to methanol molar ratio, zinc doped iron concentration, TBAI concentration, temperature, and time were carried out for the maximum conversion of biodiesel from WCO. At 50 min the maximum biodiesel conversion of 90% was achieved at 55°C with 12% catalyst, 30% co-catalyst, and 1:11 WCO to methanol ratio. The presence of functional groups and the methyl ester composition of the biodiesel from WCO were confirmed by FTIR and GC-MS analysis. The use of zinc doped iron nanocatalyst with TBAI showed good catalytic activity to produce biodiesel from WCO.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85131594313&origin=inward; http://dx.doi.org/10.3389/fnano.2022.823759; https://www.frontiersin.org/articles/10.3389/fnano.2022.823759/full; https://dx.doi.org/10.3389/fnano.2022.823759; https://www.frontiersin.org/journals/nanotechnology/articles/10.3389/fnano.2022.823759/full
Frontiers Media SA
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know