PlumX Metrics
Embed PlumX Metrics

Occlusion facial expression recognition based on feature fusion residual attention network

Frontiers in Neurorobotics, ISSN: 1662-5218, Vol: 17, Page: 1250706
2023
  • 4
    Citations
  • 0
    Usage
  • 12
    Captures
  • 0
    Mentions
  • 0
    Social Media
Metric Options:   Counts1 Year3 Year

Metrics Details

Article Description

Recognizing occluded facial expressions in the wild poses a significant challenge. However, most previous approaches rely solely on either global or local feature-based methods, leading to the loss of relevant expression features. To address these issues, a feature fusion residual attention network (FFRA-Net) is proposed. FFRA-Net consists of a multi-scale module, a local attention module, and a feature fusion module. The multi-scale module divides the intermediate feature map into several sub-feature maps in an equal manner along the channel dimension. Then, a convolution operation is applied to each of these feature maps to obtain diverse global features. The local attention module divides the intermediate feature map into several sub-feature maps along the spatial dimension. Subsequently, a convolution operation is applied to each of these feature maps, resulting in the extraction of local key features through the attention mechanism. The feature fusion module plays a crucial role in integrating global and local expression features while also establishing residual links between inputs and outputs to compensate for the loss of fine-grained features. Last, two occlusion expression datasets (FM_RAF-DB and SG_RAF-DB) were constructed based on the RAF-DB dataset. Extensive experiments demonstrate that the proposed FFRA-Net achieves excellent results on four datasets: FM_RAF-DB, SG_RAF-DB, RAF-DB, and FERPLUS, with accuracies of 77.87%, 79.50%, 88.66%, and 88.97%, respectively. Thus, the approach presented in this paper demonstrates strong applicability in the context of occluded facial expression recognition (FER).

Provide Feedback

Have ideas for a new metric? Would you like to see something else here?Let us know