EpiBOX: An Automated Platform for Long-Term Biosignal Collection
Frontiers in Neuroinformatics, ISSN: 1662-5196, Vol: 16, Page: 837278
2022
- 3Citations
- 11Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations3
- Citation Indexes3
- Captures11
- Readers11
- 11
Article Description
Biosignals represent a first-line source of information to understand the behavior and state of human biological systems, often used in machine learning problems. However, the development of healthcare-related algorithms that are both personalized and robust requires the collection of large volumes of data to capture representative instances of all possible states. While the rise of flexible biosignal acquisition solutions has enabled the expedition of data collection, they often require complicated frameworks or do not provide the customization required in some research contexts. As such, EpiBOX was developed as an open-source, standalone, and automated platform that enables the long-term acquisition of biosignals, passable to be operated by individuals with low technological proficiency. In particular, in this paper, we present an in-depth explanation of the framework, methods for the evaluation of its performance, and the corresponding findings regarding the perspective of the end-user. The impact of the network connection on data transfer latency was studied, demonstrating innocuous latency values for reasonable signal strengths and manageable latency values even when the connection was unstable. Moreover, performance profiling of the EpiBOX user interface (mobile application) indicates a suitable performance in all aspects, providing an encouraging outlook on adherence to the system. Finally, the experience of our research group is described as a use case, indicating a promising outlook regarding the use of the EpiBOX framework within similar contexts. As a byproduct of these features, our hope is that by empowering physicians, technicians, and monitored subjects to supervise the biosignal collection process, we enable researchers to scale biosignal collection.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85131826072&origin=inward; http://dx.doi.org/10.3389/fninf.2022.837278; http://www.ncbi.nlm.nih.gov/pubmed/35676972; https://www.frontiersin.org/articles/10.3389/fninf.2022.837278/full; https://dx.doi.org/10.3389/fninf.2022.837278; https://www.frontiersin.org/journals/neuroinformatics/articles/10.3389/fninf.2022.837278/full
Frontiers Media SA
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know