PlumX Metrics
Embed PlumX Metrics

The Simultaneous Formation of Acrylamide, β-carbolines, and Advanced Glycation End Products in a Chemical Model System: Effect of Multiple Precursor Amino Acids

Frontiers in Nutrition, ISSN: 2296-861X, Vol: 9, Page: 852717
2022
  • 9
    Citations
  • 0
    Usage
  • 4
    Captures
  • 0
    Mentions
  • 0
    Social Media
Metric Options:   Counts1 Year3 Year

Metrics Details

Article Description

This study investigated the effect of multiple precursor amino acids on the simultaneous formation of acrylamide, β-carbolines (i. e., harmane and norharmane), and advanced glycation end products (AGEs) [i.e., N-(carboxymethyl)lysine and N-(carboxyethyl)lysine] via a chemical model system. This model system was established with single or multiple precursor amino acids, including lysine–glucose (Lys/Glu), asparagine–glucose (Asn/Glu), tryptophan–glucose (Trp/Glu), and a combination of these amino acids (Com/Glu). Kinetic parameters were calculated by multiresponse non-linear regression models. We found that the k values of the AGEs and of acrylamide decreased, while those of harmane increased in the Com/Glu model when heated to 170 and 200°C. Our results indicated that the precursor amino acid of acrylamide and AGEs compete for α-dicarbonyl compounds, leading to a decrease in the formation of AGEs and acrylamide. Moreover, compared with asparagine, the precursor amino acid of β-carbolines was more likely to react with acetaldehyde by Pictet–Spengler condensation, which increased the formation of harmane and decreased the formation of acrylamide via the acrolein pathway.

Bibliographic Details

Provide Feedback

Have ideas for a new metric? Would you like to see something else here?Let us know