A computed tomography-based preoperative risk scoring system to distinguish lymphoepithelioma-like gastric carcinoma from non-lymphoepithelioma-like gastric carcinoma
Frontiers in Oncology, ISSN: 2234-943X, Vol: 12, Page: 872814
2022
- 1Citations
- 7Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations1
- Citation Indexes1
- Captures7
- Readers7
Article Description
Purpose: The aim of this study was to develop a preoperative risk scoring model for distinguishing lymphoepithelioma-like gastric carcinoma (LELGC) from non-LELGC based on contrast-enhanced computed tomography (CT) images. Methods: Clinicopathological features and CT findings of patients with LELGC and non-LELGC in our hospital from January 2016 to July 2022 were retrospectively analyzed and compared. A preoperative risk stratification model and a risk scoring system were developed using logistic regression. Results: Twenty patients with LELGC and 40 patients with non-LELGC were included in the training cohort. Significant differences were observed in Epstein–Barr virus (EBV) infection and vascular invasion between the two groups (p < 0.05). Significant differences were observed in the distribution of location, enhancement pattern, homogeneous enhancement, CT-defined lymph node status, and attenuations in the non-contrast, arterial, and venous phases (all p < 0.05). Enhancement pattern, CT-defined lymph node status, and attenuation in venous phase were independent predictors of LELGC. The optimal cutoff score of distinguishing LELGC from non-LELGC was 3.5. The area under the receiver operating characteristic curve, sensitivity, specificity, and accuracy of risk identification model in the training cohort were 0.904, 87.5%, 80.0%, and 85.0%, respectively. The area under the receiver operating characteristic curve, sensitivity, specificity, and accuracy of risk identification model in the validation cohort were 0.705 (95% CI 0.434–0.957), 75.0%, 63.6%, and 66.7%, respectively. Conclusion: A preoperative risk identification model based on CT imaging data could be helpful for distinguishing LELGC from non-LELGC.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85139122697&origin=inward; http://dx.doi.org/10.3389/fonc.2022.872814; http://www.ncbi.nlm.nih.gov/pubmed/36185305; https://www.frontiersin.org/articles/10.3389/fonc.2022.872814/full; https://dx.doi.org/10.3389/fonc.2022.872814; https://www.frontiersin.org/journals/oncology/articles/10.3389/fonc.2022.872814/full
Frontiers Media SA
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know