A Novel Berberine–Glycyrrhizic Acid Complex Formulation Enhanced the Prevention Effect to Doxorubicin-Induced Cardiotoxicity by Pharmacokinetic Modulation of Berberine in Rats
Frontiers in Pharmacology, ISSN: 1663-9812, Vol: 13, Page: 891829
2022
- 15Citations
- 7Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations15
- Citation Indexes15
- 15
- Captures7
- Readers7
Article Description
Developing a new drug delivery system is one of the useful approaches to overcome the limited use of berberine (BBR) to enhance its absorption and bioavailability. We prepared a novel berberine–glycyrrhizic acid (BBR–GL) complex formulation to increase the plasma concentration and bioavailability of BBR by improving BBR solubility and lowering the absorption barrier. The complex formulation with BBR and GL in the ratio 1:1 was developed through the self-assembly process and evaluated in vitro. Compared with BBR and BBR/GL physical mixture, the BBR–GL complex showed different characteristics by SEM, DSC, FT-IR, and PXRD measurement. In pharmacokinetic evaluation, the BBR–GL complex significantly increased the plasma concentration of BBR and the major metabolite berberrubine (BBB), with the AUC of BBR elevated to 4.43-folds, while the complex was safe as BBR. Furthermore, doxorubicin (DOX) was used to induce cardiotoxicity. Hematological study, histopathological examinations, electrocardiography (ECG), cardiac secretion measurement, and biochemical index analysis proved that the model of doxorubicin-induced cardiotoxicity (DIC) was conducted successfully. With the AUC of BBR increasing in the BBR–GL complex and the absorbed complex itself, the BBR–GL complex enhanced prevention effect to DIC and exhibited a significant prevention effect to attenuate heart damage. Our findings demonstrated that a novel BBR-loaded BBR–GL complex formulation could increase BBR plasma concentration. Improvement of BBR bioavailability by the BBR–GL complex could coordinate with GL to attenuate DIC. Concerning the safety of the drug delivery system at present, the BBR–GL complex could be a potential therapeutic formulation for the prevention of cardiac damage in the clinical application of doxorubicin.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85135492360&origin=inward; http://dx.doi.org/10.3389/fphar.2022.891829; http://www.ncbi.nlm.nih.gov/pubmed/35935857; https://www.frontiersin.org/articles/10.3389/fphar.2022.891829/full; https://dx.doi.org/10.3389/fphar.2022.891829; https://www.frontiersin.org/journals/pharmacology/articles/10.3389/fphar.2022.891829/full
Frontiers Media SA
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know