Storage, Splitting, and Routing of Optical Peregrine Solitons in a Coherent Atomic System
Frontiers in Physics, ISSN: 2296-424X, Vol: 9
2021
- 4Citations
- 1Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
We propose a scheme to realize the storage and retrieval of optical Peregrine solitons in a coherent atomic gas via electromagnetically induced transparency (EIT). We show that optical Peregrine solitons with very small propagation loss, ultraslow motional velocity, and extremely low generation power can be created in the system via EIT. We also show that such solitons can be stored, retrieved, split, and routed with high efficiency and fidelity through the manipulation of control laser fields. The results reported here are useful for the active control of optical Peregrine solitons and promising for applications in optical information processing and transmission.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85103849986&origin=inward; http://dx.doi.org/10.3389/fphy.2021.594680; https://www.frontiersin.org/articles/10.3389/fphy.2021.594680/full; https://dx.doi.org/10.3389/fphy.2021.594680; https://www.frontiersin.org/journals/physics/articles/10.3389/fphy.2021.594680/full
Frontiers Media SA
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know