Parameterizations of immiscible two-phase flow in porous media
Frontiers in Physics, ISSN: 2296-424X, Vol: 11
2023
- 4Citations
- 4Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
A fundamental variable characterizing immiscible two-phase flow in porous media is the wetting saturation, which is the ratio between the pore volume filled with wetting fluid and the total pore volume. More generally, this variable comes from a specific choice of coordinates on some underlying space, the domain of variables that can be used to express the volumetric flow rate. The underlying mathematical structure allows for the introduction of other variables containing the same information, but which are more convenient from a theoretical point of view. We introduce along these lines polar coordinates on this underlying space, where the angle plays a role similar to the wetting saturation. We derive relations between these new variables based on the Euler homogeneity theorem. We formulate these relations in a coordinate-free fashion using differential forms. Finally, we discuss and interpret the co-moving velocity in terms of this coordinate-free representation.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85150062970&origin=inward; http://dx.doi.org/10.3389/fphy.2023.1127345; https://www.frontiersin.org/articles/10.3389/fphy.2023.1127345/full; https://dx.doi.org/10.3389/fphy.2023.1127345; https://www.frontiersin.org/journals/physics/articles/10.3389/fphy.2023.1127345/full
Frontiers Media SA
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know