Effect of Apnea-Induced Hypoxia on Cardiovascular Adaptation and Circulating Biomarkers of Oxidative Stress in Elite Breath-Hold Divers
Frontiers in Physiology, ISSN: 1664-042X, Vol: 12, Page: 726434
2021
- 2Citations
- 23Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations2
- Citation Indexes2
- CrossRef1
- Captures23
- Readers23
- 23
Article Description
Given the previous evidence that breath-hold diving is a cause of physiological stress, this study aimed to determine whether a combination static and dynamic apnea would affect total oxidant status, nitric oxide, heat shock proteins and cardiovascular parameters in elite freedivers. Thirteen finalists of the World and European championships in swimming pool breath-hold diving participated in the study. Whole-body plethysmography and electrocardiography was performed to determine the cardiorespiratory variables at baseline and during the simulation static apnea. An assessment of the heart rate, blood oxygen saturation and biochemical variables was performed before and in response to a combination of a static followed by a dynamic apnea. Static and dynamic breath-holding had a significant effect on oxidative stress, as evidenced by an increase in the total oxidant status/capacity (p < 0.001). The post apnea concentrations of heat shock proteins 27 (HSP27) were significantly elevated (p < 0.03, but total antioxidant status (TAS), HSP90, HSP70, and nitric oxide (NO) changes were not significant. levels under the influence of the static and dynamic breath-hold protocol. A significant positive correlation between HSPs and TAS (r = 0.63; p < 0.05) as well as NO levels was associated with beneficial cardiovascular adaptation. An increase in serum HSP27 levels mediated in nitric oxide levels could explain its important role in improving cardiovascular functions in elite freedivers. Further studies are necessary to explain the exact mechanisms of breath holds training of cardiovascular adaptation responsible for maintaining adequate oxygen supply in elite divers.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85115621768&origin=inward; http://dx.doi.org/10.3389/fphys.2021.726434; http://www.ncbi.nlm.nih.gov/pubmed/34566688; https://www.frontiersin.org/articles/10.3389/fphys.2021.726434/full; https://dx.doi.org/10.3389/fphys.2021.726434; https://www.frontiersin.org/journals/physiology/articles/10.3389/fphys.2021.726434/full
Frontiers Media SA
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know