Comprehensive metabolomic and lipidomic alterations in response to heat stress during seed germination and seedling growth of Arabidopsis
Frontiers in Plant Science, ISSN: 1664-462X, Vol: 14, Page: 1132881
2023
- 10Citations
- 18Captures
- 1Mentions
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations10
- Citation Indexes10
- 10
- Captures18
- Readers18
- 18
- Mentions1
- News Mentions1
- 1
Most Recent News
Recent Findings from Zhongshan Hospital Highlight Research in Plant Science (Comprehensive metabolomic and lipidomic alterations in response to heat stress during seed germination and seedling growth of Arabidopsis)
2023 APR 11 (NewsRx) -- By a News Reporter-Staff News Editor at NewsRx Life Science Daily -- Researchers detail new data in plant science. According
Article Description
Temperature affects seed germination and seedling growth, which is a critical and complex stage in plant life cycle. However, comprehensive metabolic basis on temperature implicating seed germination and seedling growth remains less known. Here, we applied the high-throughput untargeted metabolomic and advanced shotgun lipidomic approaches to profile the Arabidopsis 182 metabolites and 149 lipids under moderate (22°C, 28°C) and extreme high (34°C, 40°C) temperatures. Our results showed that a typical feature of the metabolism related to organic acids/derivates and amines was obviously enriched at the moderate temperature, which was implicated in many cellular responses towards tricarboxylic acid cycle (TCA), carbohydrates and amino acids metabolism, peptide biosynthesis, phenylpropanoid biosynthesis and indole 3-acetate (IAA) biosynthetic pathway. Whereas, under extreme high temperatures, there was no seed germination, but 148 out of total 182 metabolites were highly enriched, involving in the galactose metabolism, fatty acid degradation, tryptophan/phenylalanine metabolism, and shikimic acid-mediated pathways especially including alkaloids metabolism and glucosinolate/flavone/flavonol biosynthesis. Phosphatidylcholine (PC) and phosphatidylethanolamine (PE) also exhibited the gradually increased tendency from moderate temperatures to extreme high temperatures; whereas phosphatidylserine (PS), phosphatidic acid (PA), phosphatidylglycerol (PG), monogalactosyldiacylglycerol (MGDG), digalactosyldiacylglycerol (DGDG) and sulfoquinovosyldiacylglycerol (SQDG) were contrary to decrease. Another typical feature of the distinguished metabolites between 22°C and 28°C, the TCA, disaccharides, nucleotides, polypeptides, SQDG and the biosynthesis of fatty acids and glucobrassicin-mediated IAA were obviously decreased at 28°C, while amino acids, trisaccharides, PE, PC, PA, PS, MGDG, DGDG and diacylglycerol (DAG) preferred to enrich at 28°C, which characterized the alteration of metabolites and lipids during fast seedling growth. Taking together, our results provided the comprehensive metabolites phenotyping, revealed the characteristics of metabolites necessary for seed germination and/or seedling growth under different temperatures, and provided insights into the different metabolic regulation of metabolites and lipid homeostasis for seed germination and seedling growth.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85152673335&origin=inward; http://dx.doi.org/10.3389/fpls.2023.1132881; http://www.ncbi.nlm.nih.gov/pubmed/37063208; https://www.frontiersin.org/articles/10.3389/fpls.2023.1132881/full; https://dx.doi.org/10.3389/fpls.2023.1132881; https://www.frontiersin.org/journals/plant-science/articles/10.3389/fpls.2023.1132881/full
Frontiers Media SA
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know