LDRGDb - Legumes disease resistance genes database
Frontiers in Plant Science, ISSN: 1664-462X, Vol: 14, Page: 1143111
2023
- 1Citations
- 15Captures
- 1Mentions
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Most Recent News
Jaypee Institute of Information Technology Researchers Report Recent Findings in Information Technology (LDRGDb - Legumes disease resistance genes database)
2023 MAY 01 (NewsRx) -- By a News Reporter-Staff News Editor at NewsRx Life Science Daily -- Research findings on information technology are discussed in
Article Description
Legumes comprise one of the world’s largest, most diverse, and economically important plant families, known for their nutritional and medicinal benefits. Legumes are susceptible to a wide range of diseases, similar to other agricultural crops. Diseases have a considerable impact on the production of legume crop species, resulting in large yield losses worldwide. Due to continuous interactions between plants and their pathogens in the environment and the evolution of new pathogens under high selection pressure; disease resistant genes emerge in plant cultivars in the field against those pathogens or disease. Thus, disease resistant genes play critical roles in plant resistance responses, and their discovery and subsequent use in breeding programmes aid in reducing yield loss. The genomic era, with its high-throughput and low-cost genomic tools, has revolutionised our understanding of the complex interactions between legumes and pathogens, resulting in the identification of several critical participants in both the resistant and susceptible relationships. However, a substantial amount of existing information about numerous legume species has been disseminated as text or is preserved across fractions in different databases, posing a challenge for researchers. As a result, the range, scope, and complexity of these resources pose challenges to those who manage and use them. Therefore, there is an urgent need to develop tools and a single conjugate database to manage genetic information for the world’s plant genetic resources, allowing for the rapid incorporation of essential resistance genes into breeding strategies. Here, developed the first comprehensive database of disease resistance genes named as LDRGDb - LEGUMES DISEASE RESISTANCE GENES DATABASE comprises 10 legumes [Pigeon pea (Cajanus cajan), Chickpea (Cicer arietinum), Soybean (Glycine max), Lentil (Lens culinaris), Alfalfa (Medicago sativa), Barrelclover (Medicago truncatula), Common bean (Phaseolus vulgaris), Pea (Pisum sativum),Faba bean (Vicia faba), and Cowpea (Vigna unguiculata)]. The LDRGDb is a user-friendly database developed by integrating a variety of tools and software that combine knowledge about resistant genes, QTLs, and their loci, with proteomics, pathway interactions, and genomics (https://ldrgdb.in/).
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85159893703&origin=inward; http://dx.doi.org/10.3389/fpls.2023.1143111; http://www.ncbi.nlm.nih.gov/pubmed/37143876; https://www.frontiersin.org/articles/10.3389/fpls.2023.1143111/full; https://dx.doi.org/10.3389/fpls.2023.1143111; https://www.frontiersin.org/journals/plant-science/articles/10.3389/fpls.2023.1143111/full
Frontiers Media SA
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know