Gallic acid regulates primary root elongation via modulating auxin transport and signal transduction
Frontiers in Plant Science, ISSN: 1664-462X, Vol: 15, Page: 1464053
2024
- 3Citations
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations3
- Citation Indexes3
Article Description
Gallic acid is an important secondary metabolite in plants, with great value in medicine, food, and chemical industry. However, whether and how this widely existing natural polyphenolic compound affects the growth and development of plants themselves remains elusive. In this study, we revealed that exogenous application of gallic acid has a dual effect on the elongation of primary root in Arabidopsis. While lower concentrations of gallic acid slightly stimulate primary root growth, excessive gallic acid profoundly reduces primary root length and root meristem size in a dose-dependent manner, probably via suppressing cell division in root meristem as indicated by CYCB1;1::GUS. Moreover, as suggested by the DR5::GFP line analysis and confirmed by the LC-MS assay, auxin contents in root tips were dramatically decreased upon excessive gallic acid treatment. Additional application of IAA partially rescued the shortened primary root and root meristem upon excessive gallic acid treatment, suggesting that auxin is required for excessive gallic acid-caused root growth inhibition. Then, we further revealed that excessive gallic acid down-regulated the expression of auxin transporters PIN1, PIN2, PIN3, and PIN7, and triple mutant pin1 pin3 pin7 exhibited a reduced sensitivity to gallic acid treatment. Meanwhile, excessive gallic acid decreased the degradation of AXR3/IAA17 protein as revealed by HS::AXR3NT-GUS reporter line. Auxin signaling mutant tir1 afb2 afb3 and axr3-3 were also less sensitive to excessive gallic acid treatment in terms of primary root length and root meristem size. Taken together, these findings suggested that excessive gallic acid inhibits primary root growth by modulating auxin transport and signaling in Arabidopsis.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85203963140&origin=inward; http://dx.doi.org/10.3389/fpls.2024.1464053; http://www.ncbi.nlm.nih.gov/pubmed/39286841; https://www.frontiersin.org/articles/10.3389/fpls.2024.1464053/full; https://dx.doi.org/10.3389/fpls.2024.1464053; https://www.frontiersin.org/journals/plant-science/articles/10.3389/fpls.2024.1464053/full
Frontiers Media SA
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know