Cell-Type Specific Deletion of CB2 Cannabinoid Receptors in Dopamine Neurons Induced Hyperactivity Phenotype: Possible Relevance to Attention-Deficit Hyperactivity Disorder
Frontiers in Psychiatry, ISSN: 1664-0640, Vol: 12, Page: 803394
2022
- 9Citations
- 33Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations9
- Citation Indexes9
- Captures33
- Readers33
- 33
Article Description
DAT-Cnr2 mice are conditional knockout (cKO) animals that do not express cannabinoid CB2 receptors (CB2R), in midbrain dopamine neurons. The hyperactivity phenotype of DAT-Cnr2 cKO mice were paradoxically reduced by low dose of amphetamine. Here, we report on the locomotor activity analysis in male and female adolescent (PND 30 ± 2) mice in basal conditions and in response to different doses of amphetamine, using the Open Field (OF), Elevated Plus-Maze (EPM) tests and the Novel Object Recognition (NOR) task as a putative model of attention deficit hyperactivity disorder (ADHD). Results showed that both male and female adolescent DAT-Cnr2 mice displayed significant increases in distance traveled in the OF test compared with WT mice. However, 2 mg/kg dose of amphetamine reduced the distance traveled by the DAT-Cnr2 but was increased in the WT mice. In the EPM test of anxiety-like behavioral responses, DAT-Cnr2 spent more time in the open arms of the maze than the WT mice, suggesting a reduction in anxiety-like response. DAT-Cnr2 mice showed significant increase in the number of unprotected head dips in the maze test and in the cliff avoidance reaction (CAR) test demonstrating impulsivity and risky behavior. DAT-Cnr2 mice also exhibited deficient response in the delay decision making (DDM), with impulsive choice. Both DAT-Cnr2 and WT were able to recognize the new object in the NOR task, but the exploration by the DAT-Cnr2 was less than that of the WT mice. Following the administration of 2 mg/kg of amphetamine, the similarities and differential performances of the DAT-Cnr2 and WT mice in the EPM test and NOR task was probably due to increase in attention. Microglia activation detected by Cd11b immunolabelling was enhanced in the hippocampus in DAT-Cnr2 cKO than in WT mice, implicating neuro-immune modulatory effects of CB2R. The results demonstrates that DAT-Cnr2 cKO mice with cell-type specific deletion of CB2R in midbrain dopaminergic neurons may represent a possible model for studying the neurobiological basis of ADHD.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85125067006&origin=inward; http://dx.doi.org/10.3389/fpsyt.2021.803394; http://www.ncbi.nlm.nih.gov/pubmed/35211038; https://www.frontiersin.org/articles/10.3389/fpsyt.2021.803394/full; https://dx.doi.org/10.3389/fpsyt.2021.803394; https://www.frontiersin.org/journals/psychiatry/articles/10.3389/fpsyt.2021.803394/full
Frontiers Media SA
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know